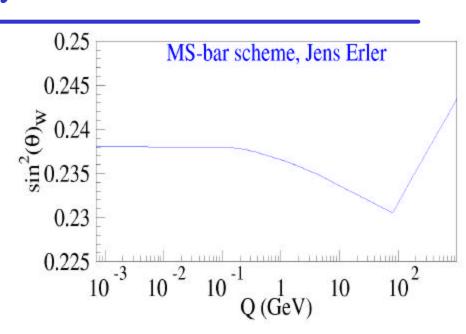
DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering

Paul E. Reimer

Argonne National Laboratory

10 January 2003

- Introduction: Weinberg-Salam Model and $sin^2(\theta_w)$
- Parity NonConserving Electron
 Deep Inelastic Scattering
- 11 GeV Measurement at Jefferson Laboratory



Work done in collaboration with Peter Bosted, Dave Mack *et al.*

Weinberg-Salam model and $\sin^2(\theta_W)$

Unification of Weak and E&M Force

- •SU(2)—weak isospin—Triplet of gauge bosons
- •U(1)—weak hypercharge—Single gauge boson Electroweak Lagrangian:

 $\mathcal{L} = g \vec{J}_{\mu} \cdot \vec{W}_{\mu} + g' J_{\mu}^{Y} B_{\mu} | J_{\mu}^{Y} = J_{\mu}^{\text{EM}} - J_{\mu}^{(3)}$

 J_m , J_m isospin and hypercharge currents g, go couplings between currents and fields

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(W_{\mu}^{(1)} \pm i W_{\mu}^{(2)} \right) \qquad \text{Weak CC}$$

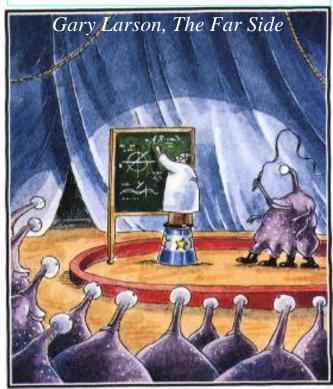
$$A_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W_{\mu}^{(3)} + g B_{\mu} \right) \qquad \text{EM NC}$$

$$Z_{\mu}^{0} = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W_{\mu}^{(3)} - g B_{\mu} \right) \qquad \text{Weak NC}$$

 $\theta_{\rm w}$, relative strength of the SU(2) and U(1) couplings:

$$\tan \theta_W = \frac{g'}{g} \quad \sin \theta_W = \frac{g'}{\sqrt{g'^2 + g^2}}$$
$$\cos \theta_W = \frac{g}{\sqrt{g'^2 + g^2}}$$

Remember—I'm not the expert. . .



Abducted by an alien circus company, Professor Doyle is forced to write calculus equations in center ring.

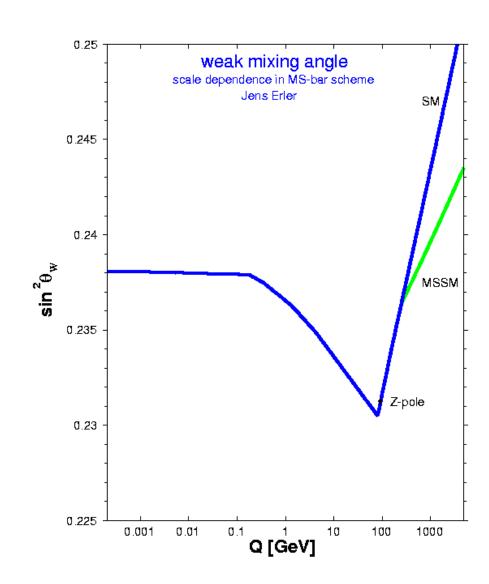
•Observables:

•
$$Q_{EM}$$
 $e = g \sin(\theta_W)$

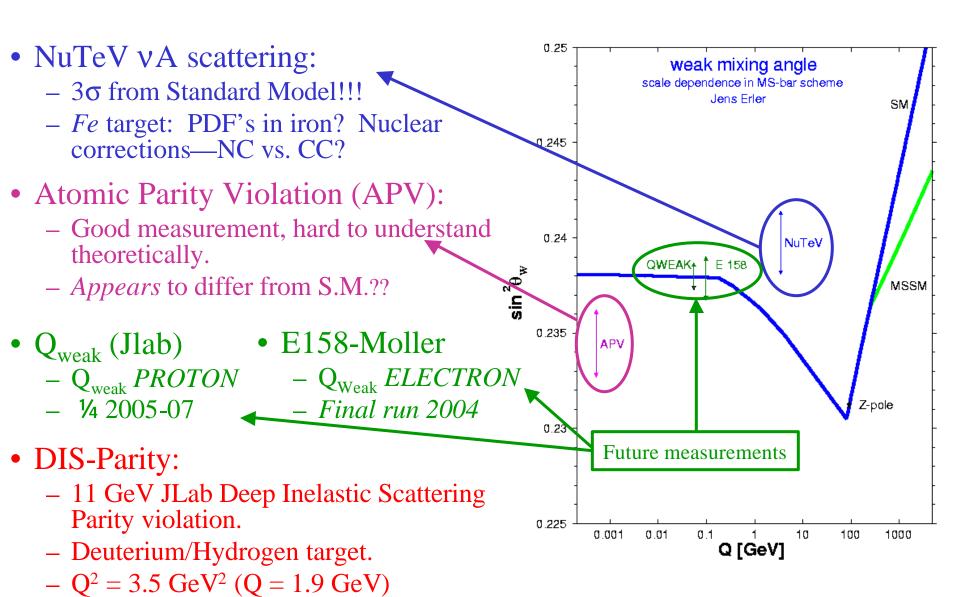
•
$$\sin^2(\theta_W) = 1 - M_W^2 / M_Z^2$$
.

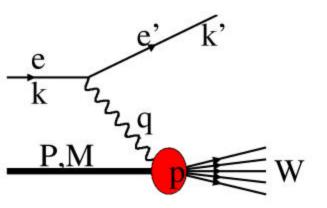
$\sin^2(\theta_{\rm W})$ vs. Q^2

- Standard Model predicts $\sin^2(\theta_w)$ varies (runs) with Q^2
 - Well measured at Z-pole, but not at other Q².
 - Running sensitive to non-Standard Model Physics.
 - Different measurements sensitive to *different* non-S.M. physics.
- $\sin^2(\theta_W)$ is *scheme dependent* observable—it's value depends on the renormalization scheme.



$\sin^2(\theta_w)$ measurements below Z-pole





$$Q^{2} = -q^{2} = 2(EE^{0} - \mathbf{k}^{0} \mathbf{k})$$

$$-m_{l}^{2} - m_{l}^{2}$$

$$1/4 \ 4EE^{0} \sin^{2}(\theta/2)$$

$$\mathbf{v} = \mathbf{q}^{0} \mathbf{P}/\mathbf{M} = \mathbf{E} - \mathbf{E}^{0}$$

$$x = Q^2/2Mv$$

$$y = q P k P = v / E$$

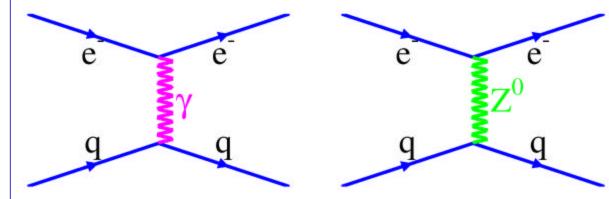
$$W^2 = (\mathbf{P} + \mathbf{q})^2$$
$$= M^2 + 2M\nu - Q^2$$

$$\mathbf{s} = (\mathbf{k} + \mathbf{P})^2$$
$$= \mathbf{Q}^2/\mathbf{x}\mathbf{y} + \mathbf{M}^2 + \mathbf{m}_I^2$$

Polarized e deuterium DIS

Look for left-right asymmetry in polarized eD deep inelastic scattering

•Asymmetry caused by interference between Z^0 and γ diagrams.



- •Use deuterium target: $u(x) \cdot d(x)$
- •Large asymmetry: A_d¼ 10⁻⁴

DIS Formalism

$$A_d = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$
$$= -\left(\frac{3G_F Q^2}{\sigma_R Q^2}\right)^{\frac{1}{2}}$$

Longitudinally polarized electrons on unpolarized isoscaler (deuterium) target (derivation is problem for listener).

$$= -\left(\frac{3G_FQ^2}{\pi\alpha^2\sqrt{2}}\right)\frac{2C_{1u} - C_{1d}\left[1 + R_s(x)\right] + Y\left(2C_{2u} - C_{2d}\right)R_v(x)}{5 + R_s(x)}$$

$$Y = \frac{1 - (1 - y)^2}{1 + (1 - y)^2 - y^2 R / (1 + R)}$$

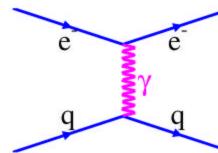
$$R(x,Q^2) = \sigma_L/\sigma_R \approx 0.2$$

$$Y = \frac{1 - (1 - y)^2}{1 + (1 - y)^2 - y^2 R / (1 + R)} \qquad R_s(x) = \frac{2s(x)}{u(x) + d(x)} \xrightarrow{\text{large} \times} 0$$

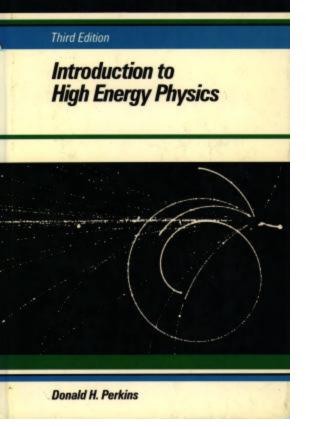
$$R(x, Q^2) = \sigma_L / \sigma_R \approx 0.2 \qquad R_v(x) = \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \xrightarrow{\text{large} \times} 1$$

$$C_{2q}$$
) NC axial coupling to q
£ NC vector coupling to e

$$\begin{split} & C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2(\theta_W) \approx -0.19 \\ & C_{1d} = \frac{1}{2} - \frac{2}{3}\sin^2(\theta_W) \approx 0.35 \\ & C_{2u} = -\frac{1}{2} + 2\sin^2(\theta_W) \approx -0.04 \\ & C_{2d} = \frac{1}{2} - 2\sin^2(\theta_W) \approx 0.04. \end{split}$$



Note that each of the C_{ia} are sensitive to different possible S.M. extensions.



Textbook Physics: Polarized e⁻ d scattering

9.7. Experimental Tests of Neutral Currents in the Weinberg-Salam Model

333

9.7.4. Asymmetries in the Scattering of Polarized Electrons by Deuterons

Finally we discuss a very delicate experiment to detect tiny parity-violation effects (asymmetries) due to the interference between Z^0 and γ -exchange in inelastic scattering of polarized electrons by deuterons. The experiment was carried out with beams of electrons of 16-22-GeV/c momentum at SLAC, the reaction being

$$e_{L,R}^- + d_{\text{unpolarized}} \rightarrow e^- + X,$$

Repeat SLAC experiment (30 years later) with better statistics and systematics at 12 GeV Jefferson Lab:

• Beam current 100 μA vs. 4 μA at SLAC in '78 £ 25

£ 25 stat

• 60 cm target vs. 30 cm target

£ 2 stat

• P_e (=electron polarization) = 80% vs. 37%

£ 4 stat

• δ P_e ¼ 1% vs. 6%

£ 6 sys

Experimental Constraints and Kinematics

- Small sea quark uncertainties x > 0.3
- Better sensitivity to $\sin^2(\theta_{\mathbf{W}})$) Large Y
- DIS region, minimize higher twist) Q²>2.0 GeV²
 - $W^2>4.0 \text{ GeV}^2$
- d(x)/u(x) uncertainties) deuterium target
- Pion and other backgrounds) $E^{0}/E>0.3$ (y<0.7)

Quick calculations show that these conditions are best matched with an 11 GeV beam and an electron scattering angle of approximately 10[±]-15[±] (12.5[±]).

$$hxi = 0.45$$
 $hQ^2i = 3.5 \text{ GeV}^2$

$$hYi = 0.46$$
 $hW^2i = 5.23 \text{ GeV}^2$

$$\frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W} \bigg|_{Y=0.46} \approx \frac{1}{2} \left(\frac{\delta A_d}{A_d} \right) \qquad A_d \approx 2.9 \times 10^{-4}$$

Detector and Expected Rates

- Expt. Assumptions:
 - 60 cm ld₂/lH₂ target
 - 11 GeV beam @ 90μA
 - 75% polar.
 - − 12.5[±] central angle
 - $-12 \, \mathrm{msr} \, \mathrm{d}\Omega$
 - 6.8 GeV§ 10% momentum bite

- Rate expectations:
 - 1MHz DIS
 - $-\pi/e \frac{\pi}{1}$ 1 MHz pions
 - 2 MHz Total rate
 - dA/A = 0.5%) 345 hrs (ideal) plus time for H₂ and systematics studies.

- Will work in either Hall C (HMS +SHMS) or Hall A (MAD)
- π /e separation requires gas Cherenkov counters ¼ 6 GeV thresh.
- Ignore tracking in detectors
- Rate requires flash ADC's on Cherenkov and Calorimeters—this is a counting experiment!!

Uncertainties in A_d

• Beam Polarization:

- QWeak also needs 1.4% polarization accuracy.
- Hall C Moller has achieved
 0.5% polarization accuracy.
- Higher twists may enter in at this low of Q²:
 - Check by taking additional data at lower Q²
 - 12.5[±]—11 GeV and
 15[±]—8 GeV data
 - Possible 6 GeV experiment?
- EMC effect in d₂
 - Check with proton data in region where d/u is known.

Statistical	0.5%
Beam polarization	1.0%
δQ^2	0.5%
Radiative corr.	<1%
$\delta R = \delta(\sigma_L/\sigma_T) = $ \$ 15%	<0.02%
$\delta s(x) = $ § 10%	<0.03%
Higher Twist	????
EMC Effect	????

Expected $\sin^2(\theta_W)$ Results

$$A = f \left[\alpha + \beta \sin^2(\theta_W) \right] \quad A = 1.1 \times 10^{-4} Q^2 \left[2.2 - 6.1 \sin^2(\theta_W) \right]$$

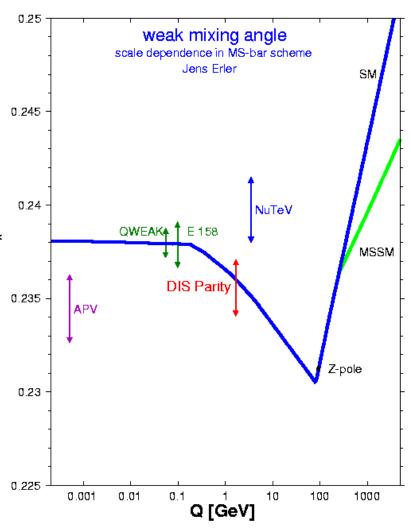
$$\frac{\delta \sin^2 (\theta_W)}{\sin^2 (\theta_W)} = \frac{\delta A}{A} \frac{1}{\beta} \frac{\alpha + \beta \sin^2 (\theta_W)}{\sin^2 (\theta_W)}$$

Measure A_d to § 0.5% stat § 1.1% syst. (1.24% combined)

Measurement uncertainties driven by polarization uncertainties

$$\frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W} \Big|_{Y=0.46} = 0.56 \left(\frac{\delta A_d}{A_d}\right)$$
$$= 0.7\%$$

What about C_{ia} 's?



Extracted Signal—It's all in the binning

$$\frac{A_d}{1.1 \times 10^{-4} Q^2} \approx -\left[(2C_{1u} - C_{1d}) + Y (2C_{2u} - C_{2d}) \right]$$

PDG: $C_{1u} = -0.209 \$ 0.041$ highly $C_{1d} = 0.358 \$ 0.037$ correlated

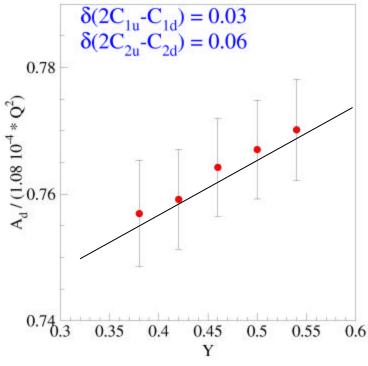
$$2C_{2u} - C_{2d} = -0.08 \$ 0.24$$

This measurement:

$$\delta(2C_{10} - C_{1d}) = 0.03$$
 (stat.)

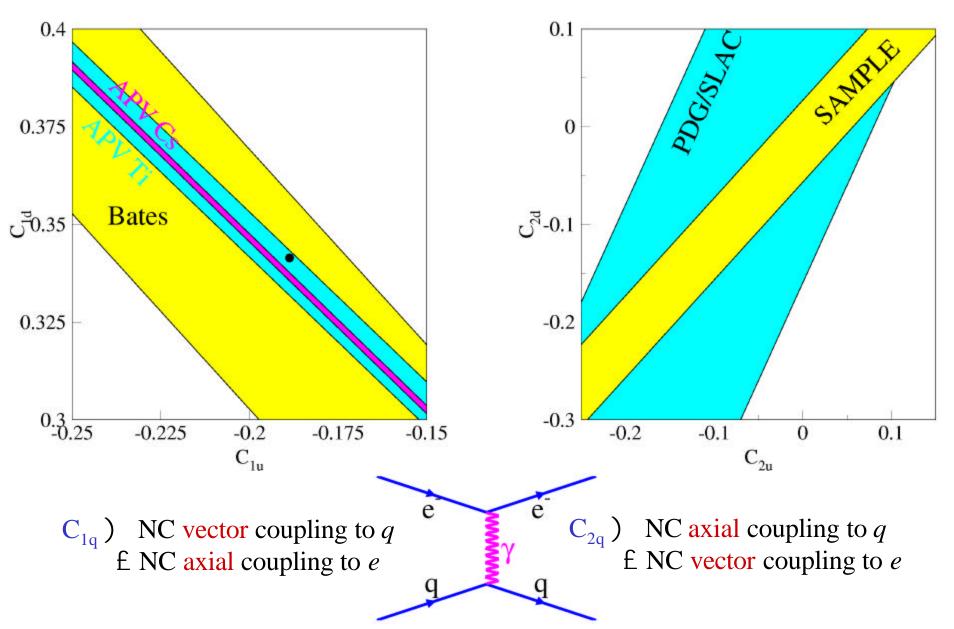
$$\delta(2C_{2u} - C_{2d}) = 0.06$$
 (stat.)

(with out considering other expts.)

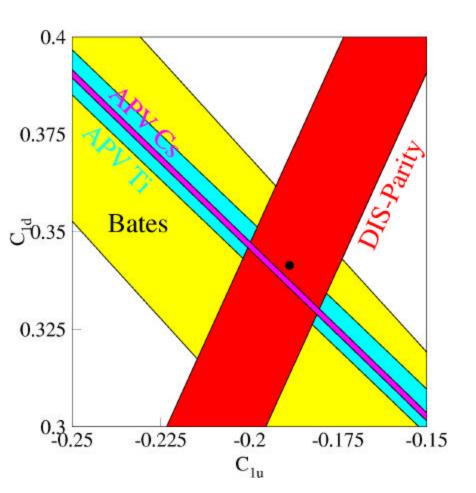


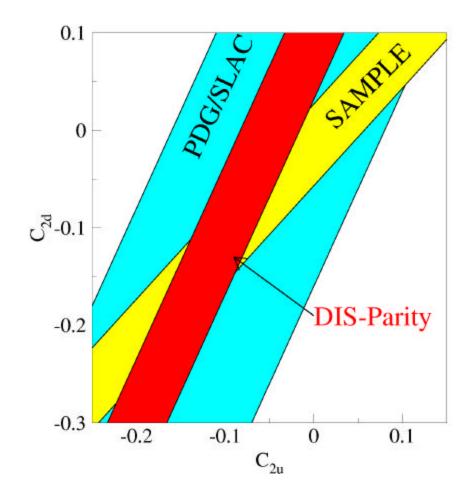
Note—Polarization uncertainty enters as in slope and intercept $A_{obs} = PA_d / P(2C_{1u}-C_{1d}) + P(2C_{2u}-C_{2d})Y]$ but is correlated

Constraints with DIS-Parity



Constraints with DIS-Parity

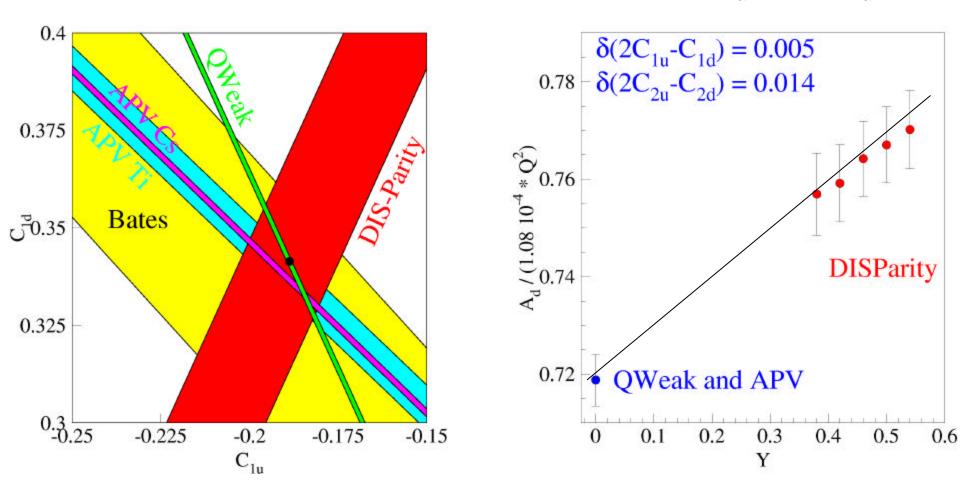




DIS-Parity provides intersecting constraints on C_{ia} parameters:

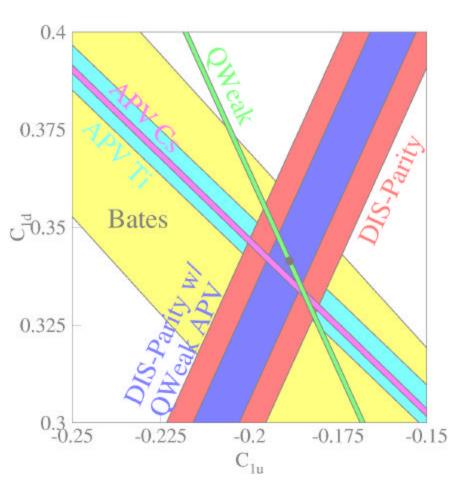
$$\delta(2C_{1u}-C_{1d}) = 0.03 \text{ (stat.)}$$
 $\delta(2C_{2u}-C_{2d}) = 0.06 \text{ (stat.)}$ (1 σ limits)

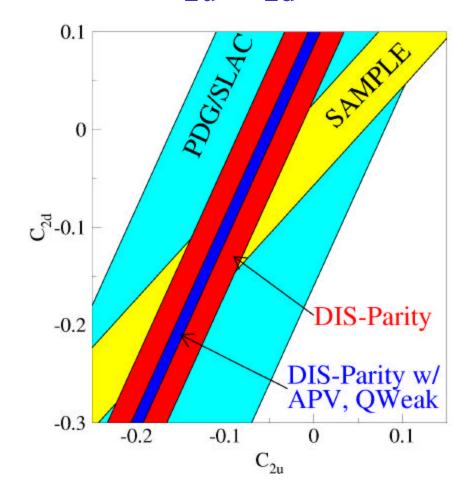
QWeak & APV will Constrain C_{1u} & C_{1d}



Combined expected Qweak (proton) and APV measurements give a better value for C_{1u} and C_{1d} . Will provide an "anchor" point for fit. Very useful in determining $2C_{2u} - C_{2d}$.

DIS-Parity determines 2C_{2u}-C_{2d}

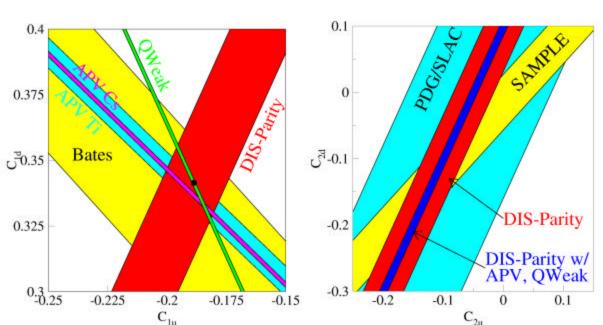


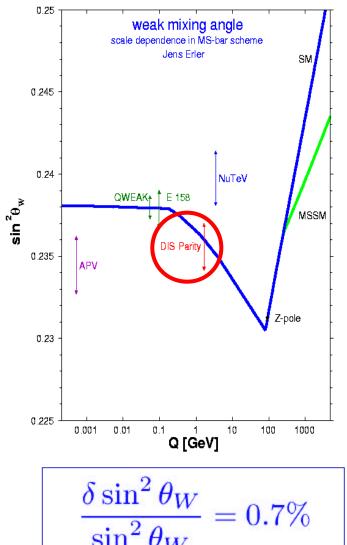


Combined result significantly constrains $2C_{2u}-C_{2d}$. PDG $2C_{2u}-C_{2d}=-0.08$ § 0.24 Combined $\delta(2C_{2u}-C_{2d})=$ § 0.014 £ 17 improvement (S.M $2C_{2u}-C_{2d}=0.0986$)

DIS-Parity: Conclusions

- Measurements of $\sin^2(\theta_W)$ below M_Z provide strict tests of the Standard Model.
- Parity NonConserving DIS provides complimentary sensitivity to other planned measurements.
- DIS-Parity Violation measurements can be carried out at Jefferson Lab with the 12 GeV upgrade (beam and detectors) in either Hall A or Hall C.





$$\frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W} = 0.7\%$$
$$\delta(2C_{1u} - C_{1d}) = 0.005$$
$$\delta(2C_{2u} - C_{2d}) = 0.014$$

10 January 2003

Paul E. Reimer, Argonne National Laboratory

Weinberg-Salam model and $\sin^2(\theta_W)$

Unification of Weak and E&M Force

- •SU(2)—weak isospin—Triplet of gauge bosons
- •U(1)—weak hypercharge—Single gauge boson

Electroweak Lagrangian:

$$\mathcal{L} = g\vec{J}_{\mu} \cdot \vec{W}_{\mu} + g'J_{\mu}^{Y}B_{\mu}$$
$$J_{\mu}^{Y} = J_{\mu}^{\text{EM}} - J_{\mu}^{(3)}$$

 $J_{\mu}^{Y} = J_{\mu}^{\rm EM} - J_{\mu}^{(3)}$ $J_{m} J_{m}^{y}$ isospin and hypercharge currents g, go couplings between currents and fields

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(W_{\mu}^{(1)} \pm i W_{\mu}^{(2)} \right) \quad \text{Weak CC}$$

$$A_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W_{\mu}^{(3)} + g B_{\mu} \right) \quad \text{EM NC}$$

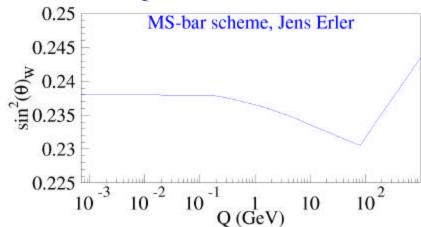
$$Z_{\mu}^{0} = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W_{\mu}^{(3)} - g B_{\mu} \right) \quad \text{Weak NC}$$

$$\tan \theta_{W} = \frac{g'}{g} \quad \sin \theta_{W} = \frac{g'}{\sqrt{g'^2 + g^2}}$$

$$\cos \theta_{W} = \frac{g}{\sqrt{g'^2 + g^2}}$$

•Observables: Q_{EM} $e = g \sin(\theta_W)$ $\sin^2(\theta_W) = 1 - M_W^2/M_Z^2$.

- θ_w , relative strength of the SU(2) and U(1) couplings: $\tan(\theta_w)$ g/g
- Standard Model predicts $\sin^2(\theta_W)$ varies (runs) with Q^2
 - Well measured at Z-pole, but not at other Q².



- Running sensitive to non-Standard Model Physics.
- Different measurements sensitive to different non-S.M. physics.
- $\sin^2(\theta_W)$ is *scheme dependent* observable—it's value depends on the renormalization scheme.

Additional Possibilities with H₂

- Asymmetry in σ_d - $2\sigma_p$
 - Interpretation does not require knowledge of parton distributions.

$$A_{d2p} = \frac{\sigma_d^L - \sigma_d^R - 2(\sigma_p^L - \sigma_p^R)}{\sigma_d^L + \sigma_d^R - 2(\sigma_p^L + \sigma_p^R)}$$

$$= \left(\frac{G_F Q^2}{\pi \alpha 2 \sqrt{2}}\right) \left[-\frac{1}{2} + 2\sin^2(\theta_W)\right]$$

$$\times [1 + Y]$$

$$\approx -0.65 \times 10^{-5} Q^2 (1 + Y)$$

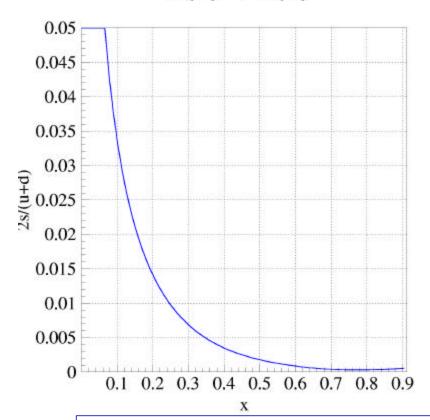
- Ratio of asymmetries: A_p/A_d
 - If C_{1a} 's are known, measures $r(x) \frac{1}{4} \frac{d(x)}{u(x)}$ at large x.
 - Polarization cancels out.

$$\left(\frac{A_p}{A_d}\right) = \left(\frac{2C_{1u} - r(x)C_{1d}}{2C_{1u} - C_{1d}}\right) \left(\frac{5}{4 + r(x)}\right)$$
$$r(x) \approx d(x)/u(x)$$

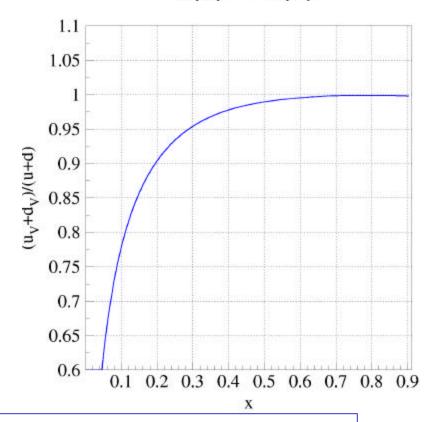
- s-quark distribution at low x: A_p
 - Q² possibly not high enough at Jlab 11 GeV.

$R_s(x)$ and $R_V(x)$

$$R_s(x) = \frac{2s(x)}{u(x) + d(x)} \xrightarrow{\text{large } \times} 0$$



$$R_v(x) = \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \xrightarrow{\text{large} \times} 1$$



Uncertainties in PDF's are now known and would be factored into overall error budget.